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A DECOMPOSITION OF THE CURVATURE TENSOR

ON SU(3)/T (k, l) WITH A SU(3)-INVARIANT METRIC

Heui-Sang Son*, Joon-Sik Park**, and Yong-Soo Pyo***

Abstract. In this paper, we decompose the curvature tensor (field)
on the homogeneous Riemannian manifold SU(3)/T (k, l) with an
arbitrarily given SU(3)-invariant Riemannian metric into three cur-
vature-like tensor fields, and investigate geometric properties.

1. Introduction

Let (V,< , >) be an n-dimensional real inner product space. In
this paper, we use the notion of a curvature-like tensor of type (1, 3) on
(V,< , >) (cf. (2.1)). We put

L(V ) := {L | L is a curvature-like tensor on (V,< , >)},
L1(V ) := {L ∈ L(V ) | L(u, v) = c u ∧ v for u, v ∈ V and some c ∈ R},
Lω(V ) := {L ∈ L(V ) | the Ricci tensor RicL of L is zero},

L2(V ) := {L ∈ L1(V )⊥ | < L,L′ >= 0 for all L′ ∈ Lω(V )}.

Then L(V ) is decomposed into the orthogonal direct sum L1(V ) ⊕
Lω(V ) ⊕ L2(V ). Let L = L1 + Lω + L2 (L ∈ L(V )) be the decom-
position corresponding to L1(V )⊕ Lω(V )⊕ L2(V ). The component Lω
of L ∈ L(V ) is said to be the Weyl tensor of L. The curvature-like
tensors L1, Lω, L2 of L = L1 +Lω +L2 ∈ L(V ) are given in terms of the
Ricci tensor RicL and the scalar curvature SL of L (cf. Lemma 2.1).

In this paper, using Lemma 2.1 we decompose the curvature tensor on
the homogeneous Riemannian manifold (SU(3)/T (k, l), g(λ1,λ2,λ3)) into
three curvature-like tensor fields. On the manifold SU(3)/T (k, l), we
deal with an arbitrary SU(3)-invariant Riemannian metric g = g(λ1,λ2,λ3).
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Geometric properties on SU(3)/T (k, l) have been studied by many math-
ematicians (cf. [1, 6, 9, 10]).

Now, let R be the curvature tensor (field) on the homogeneous mani-

fold (SU(3)/T (k, l), g(λ1,λ2,λ3)), and R = R(1)+Rω+R(2) the orthogonal
decomposition of the curvature tensor R corresponding to

L(To(G/H)) = L1(To(G/H))⊕ Lω(To(G/H))⊕ L2(To(G/H))

(cf. Lemma 2.1), where G := SU(3), H := T (k, l) and O := {T (k, l)}.
Let m be the subspace of su(3) such that

B(m, t(k, l)) = 0 and Ad(h)m ⊂ m (h ∈ T (k, l)),

where su(3) is the Lie algebra of SU(3), B is the negative of the Killing
form of su(3), t(k, l) is the Lie algebra of T (k, l), and Ad is the adjoint
representation of SU(3) on su(3).

In this paper, we represent the curvature-like tensors R(1), Rω and
R(2) in the orthogonal decomposition R = R(1) +Rω +R(2) (∈ L1(V )⊕
Lω(V )⊕L2(V )) of the curvature tensor R on (SU(3)/T (k, l), g(λ1,λ2,λ3))
for (k, l) ∈ D, where

D := Z2 \ {(0, t), (t, 0), (t, t), (t,−t), (t,−2t), (2t,−t) | t ∈ R}

(cf. Theorem 4.3). And then, under the condition (k, l) ∈ D ⊂ Z2, we

obtain the Ricci tensor Ric(2) of the component R(2) of the curvature
R = R(1)+Rω+R(2) on the homogeneous space (SU(3)/T (k, l), g(λ1,λ2,λ3))

(cf. Corollary 4.4). Furthermore, we estimate the Ricci curvature r(2)

of the curvature-like tensor R(2) (cf. Proposition 4.5).

2. Preliminaries

Let (V,< , >) be an n-dimensional real inner product space and gl(V )
the vector space of all endomorphisms of V . We denote by L(V ) the
vector space of all tensors of type (1, 3) on V which satisfy the following
properties:

L : V × V → gl(V )

is an R-bilinear map such that, for all v1, v2, v3, v4 ∈ V ,

< L(v1, v2)v3, v4 > − < L(v2, v1)v3, v4 >= − < L(v1, v2)v4, v3 >,

< L(v1, v2)v3, v4 > + < L(v2, v3)v1, v4 > + < L(v3, v1)v2, v4 >= 0.

(2.1)
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A tensor L ∈ L(V ) (of type (1, 3) on (V,< , >) which satisfies the
condition (2.1)) is called a curvature-like tensor (cf. [3. 4]). If L ∈ L(V ),
then we get from (2.1)

(2.2) < L(v1, v2)v3, v4 >=< L(v3, v4)v1, v2 > (v1, v2, v3, v4 ∈ V ).

From now on, let {ei}ni=1 be an orthonormal basis of (V,< , >). The
Ricci tensor RicL of type (0, 2) with respect to a curvature-like tensor
L on V is defined by

(2.3) RicL(v, w) :=
n∑
i=1

< L(ei, v)w, ei > (v, w ∈ V ).

The Ricci tensor RicL of type (1, 1) with respect to L ∈ L(V ) is defined
by

(2.4) < RicL(v), w >= RicL(v, w) (v, w ∈ V ).

For L ∈ L(V ), we obtain from (2.1) ∼ (2.4)

RicL(v, w) =< RicL(v), w >= RicL(w, v) =< RicL(w), v >

for v, w ∈ V .
The trace of RicL for L ∈ L(V )

(2.5) SL :=
n∑
i=1

< RicL(ei), ei >=
n∑

i,j=1

< L(ej , ei)ei, ej >

is called the scalar curvature with respect to L ∈ L(V ). The sectional
curvature KL(σ) (L ∈ L(V )) for each plane σ = {v, w}R(⊂ V ) is defined
by

KL(σ) =
< L(v, w)w, v >

< v, v >< w,w > − < v,w >2
.

In general, the inner product < , > on L(V ) is defined by

(2.6) < L,L′ >=
n∑

i,j,k,l=1

L l
ijk · L′

l
ijk ,

where L l
ijk =< L(ei, ej)ek, el >.

Let L1(V ) be the subspace of L(V ) which consists of all elements
L ∈ L(V ) such that

L(v, w) = c v ∧ w for v, w ∈ V and some c ∈ R.

Here v ∧ w is an element of gl(V ) which is defined by

v ∧ w : V 3 z 7−→ (v ∧ w)(z) =< w, z > v− < v, z > w ∈ V.
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We put

L1(V )⊥ := {L ∈ L(V ) | < L,L′ >= 0 for all L′ ∈ L1(V )}.
Then L1(V )⊥ = {L ∈ L(V ) | SL = 0}. In fact, for L ∈ L(V ) and
L′ ∈ L1(V ), we get from (2.5) and (2.6), and the definition of L1(V )

(2.7) < L,L′ >= 2c SL,

where L′(v, w) = cv ∧ w for some c ∈ R. From (2.7), we obtain the
following;

< L,L′ >= 0 for all L′ ∈ L1(V ) ⇐⇒ 2c SL = 0 for all c ∈ R
⇐⇒ SL = 0.

Putting

{L ∈ L1(V )⊥ | RicL = 0} =: Lω(V )

and

{L ∈ L1(V )⊥ | < L,L′ >= 0 for all L′ ∈ Lω(V )} =: L2(V ),

we get the orthogonal direct sum decomposition of L(V ) as follows:

L(V ) = L1(V )⊕ Lω(V )⊕ L2(V ).

Putting together the results above, we obtain the following (cf. [5,
Chapter 5])

Lemma 2.1. Let V be an n(≥ 3)-dimensional real inner product space
and L ∈ L(V ). Then components L1 ∈ L1(V ), Lω ∈ Lω(V ) and L2 ∈
L2(V ) of L(= L1 + Lω + L2) are given as follows:

(2.8)

L1(u, v) =
SL

n(n− 1)
u ∧ v,

L2(u, v) =
1

n− 2

{
RicL(u) ∧ v + u ∧ RicL(v)− 2SL

n
u ∧ v

}
,

Lω(u, v) =L(u.v)− 1

n− 2
{RicL(u) ∧ v + u ∧ RicL(v)}

+
SL

(n− 1)(n− 2)
u ∧ v.

Proof. The fact that L1, L2, Lω appeared in (2.8) belong to L(V ) is
easily verified. And, L = L1 + Lω + L2. Moreover from straightforward
computations we get

SL2 = 0, RicLω = 0, < L2, Lω >= 0.

Thus the proof of Lemma 2.1 is completed.
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3. Inequivalent isotropy irreducible representations in
SU(3)/T (k, l)

3.1. Isotropy irreducible representations

Let G be a compact connected semisimple Lie group and H a closed
subgroup of G. The homogeneous space G/H is reductive, that is, in
the Lie algebra g of G there exists a subspace m such that g = h + m
(direct sun of vector subspaces) and Ad(h) m ⊂ m for all h ∈ H, where
h is the subalgebra of g corresponding to the identity component Ho of
H and Ad(h) denotes the adjoint representation of H in m.

Let τx (x ∈ G) be the transformation of G/H which is induced by x.
Taking differentials of τx at po := {H} (∈ G/H), we obtain the fact that
the tangent space Tpo(G/H) = m is Ad(H)-invariant. The homogeneous
space G/H is said to be isotropy irreducible if (Tpo(G/H),Ad(H)) is an
irreducible representation.

3.2. Inequivalent isotropy irreducible summands in
SU(3)/T (k, l)

Here and from now on, without further specification, we use the fol-
lowing notations:

G = SU(3), g : the Lie algebra of SU(3), i =
√
−1,

T = T (k, l) = {diag[e2πikθ, e2πilθ, e−2πi(k+l)θ | θ ∈ R} for (k, l) ∈ Z2

and |k|+ |l| 6= 0,

t(k, l) : the Lie algebra of T (k, l), γ = k2 + kl + l2,

(X,Y )0 = B(X,Y ) = −6 Trace(XY ), X, Y ∈ g : the negative of

the Killing form of g.

Let Eij be a real 3× 3 matrix with 1 on entry (i, j) and 0 elsewhere.
And we put

X1 =
1√
12

(E12 − E21), X2 =
i√
12

(E12 + E21),

X3 =
1√
12

(E13 − E31), X4 =
i√
12

(E13 + E31),

X5 =
1√
12

(E23 − E32), X6 =
i√
12

(E23 + E32),

(3.1)
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X7 =
i√
36γ

diag[(k + 2l),−(2k + l), (k − l)],

X8 =
i√
12γ

diag[k, l,−(k + l)].

Then

{X1, · · · , X7} (resp. {X8})
is an orthonormal basis of m (resp. t(k, l)) with respect to (· , ·)0 such
that

g = m + t(k, l) and (m, t(k, l))0 = 0.

If we put {X1, X2}R= m1, {X3, X4}R= m2, {X5, X6}R= m3, and {X7}R=
m4, then mi are irreducible Ad(T )-representation spaces.

In general, two representations (µ1, V1) and (µ2, V2) of a Lie group G
are called equivalent if there exists a linear isomorphism ρ of V1 onto V2
such that ρ ◦ µ1(x) = µ2(x) ◦ ρ for all x ∈ G.

Park obtained the following

Theorem 3.1. ([9]) Assume that |k| + |l| 6= 0 (k, l ∈ Z). Then a
necessary and sufficient condition for (mi,Ad(T (k, l))) (i = 1, 2, 3, 4) to
be mutually inequivalent is

k 6= 0, l 6= 0, k 6= ±l, k 6= −2l and l 6= −2k.

4. A decomposition of the curvature tensor on SU(3)/T (k, l)
with an arbitrarily given SU(3)-invariant Riemannian met-
ric

4.1. The curvature tensor field on a homogeneous Riemann-
ian space

Let G be a compact connected semisimple Lie group and H a closed
subgroup of G. We denote by g and h the corresponding Lie algebras of
G andH, respectively. Let B be the negative of the Killing form of g. We
consider the Ad(H )-invariant decomposition g = h+m with B(h,m) = 0.
Then the set of G-invariant symmetric covariant 2-tensor fields on G/H
can be identified with the set of Ad(H)-invariant symmetric bilinear
forms on m. In particular, the set of G-invariant Riemannian metrics on
G/H is identified with the set of Ad(H)-invariant inner products on m
(cf. [2, 5, 8, 9]).

Let < , > be an inner product which is invariant with respect to
Ad(H) on m, where Ad denotes the adjoint representation of H in g.
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This inner product < , > determines a G-invariant Riemannian metric
g<,> on G/H.

For the sake of the calculus, we take a neighborhood V of the identity
element e in G and a subset N (resp. NH) of G (resp. H) in such a way
that

(i) N = V ∩ exp(m), NH = V ∩ exp(h),
(ii) the map N ×NH 3 (c, h) 7→ ch ∈ N ·NH is a diffeomorphism,
(iii) the projection π of G onto G/H is a diffeomorphism of N onto a

neighborhood π(N) of the origin {H} inG/H. Here, {exp(tX) | t ∈
R} for X ∈ g is a 1-parameter subgroup of G.

Now for an element X ∈ m, we define a vector field X∗ on the neigh-
borhood π(N) of {H} in G/H by

X∗π(c) := (τc)∗X{H} ∈ Tπ(c)G/H (c ∈ N),

where τc denotes the transformation of G/H which is induced by c. Let
{Xi}i be an orthonormal basis of the inner product space (m, < , >).
Then {Xi}i is an orthonormal frame on π(N)(⊂ G/H).

On the other hand, the connection function α (cf. [7, p.43]) on m×m
corresponding to the invariant Riemannian connection of (G/H, g< , >)
is given as follows (cf. [7, p.52]):

α(X,Y ) =
1

2
[X,Y ]m + U(X,Y ) (X,Y ∈ m) ,

where U(X,Y ) is determined by

2 < U(X,Y ), Z > = < [Z,X]m, Y > + < X, [Z, Y ]m >

for X,Y, Z ∈ m, and Xm denotes the m-component of an element X ∈
g = h+m. Let∇ be the Levi-Civita connection on the Riemannian mani-
fold (G/H, g< , >). Then on π(N) (∇X∗Y ∗){H} = α(X,Y ) (X,Y ∈ m).
Moreover, the expression for the value at po := {H}(∈ G/H) of the
curvature tensor field is as follows (cf. [7, p.47]):

(4.1)
R(X,Y )Z = α(X,α(Y, Z))− α(Y, α(X,Z))

− α([X,Y ]m, Z)− [[X,Y ]h, Z] (X,Y, Z ∈ m),

where Xm (resp. Xh) denotes the m - component (resp. h -component)
of an element X ∈ g = h + m.

In general, the Ricci tensor field Ric of type (0,2) on a Riemannian
manifold (M, g) is defined by

(4.2) Ric(Y,Z) = Trace {X 7→ R(X,Y )Z} (X,Y, Z ∈ X(M)).
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Let {Yj}j be an orthonormal basis of the inner product (m, < , >).
Since the group G is unimodular, we obtain the fact (cf. [2, p.184]) that

(4.3)
∑
j

U(Yj , Yj) = 0.

Using (4.1), (4.2) and (4.3), we obtain the following expression (cf. [2,
p.184-185]) for the value at po of the Ricci tensor fieldRic on (G/H, g< , >):

(4.4)

Ric(Y, Y ) =− 1

2

∑
j

< [Y, Yj ]m, [Y, Yj ]m > +
1

2
B(Y, Y )

+
1

4

∑
i,j

< [Yi, Yj ]m, Y >2

for Y ∈ m, where B is the negative of the Killing form of the Lie algebra
g.

4.2. Ricci tensor fields on inequivalent isotropy irreducible
homogeneous spaces

We retain the notation as in Section 4.1. The set of G-invariant
symmetric tensor fields of type (0, 2) on G/H can be identified with the
set of Ad(H)-invariant symmetric bilinear forms on m. In particular, the
set of G-invariant metrics on G/H is identified with the set of Ad(H)-
invariant inner products on m.

Let ( , )o be an Ad(G)-invariant inner product on g such that (m, h)o =
0. For the sake of simplicity, we put ( , )o =: B. Let m = m1 +
· · · + mq be an orthogonal Ad(H)-invariant decomposition of the space
(m, B) such that Ad(H)mi is irreducible for i = 1, . . . , q, and assume
that (mi,Ad(H)) are mutually inequivalent irreducible representations.
Then, the space of G-invariant symmetric tensor fields of type (0, 2) on
G/H is given by

{λ1B|m1 + · · ·+ λqB|mq | λ1, . . . , λq ∈ R},
and the space of G-invariant Riemannian metrics on G/H is given by

(4.5) {λ1B|m1 + · · ·+ λqB|mq | λ1 > 0, . . . , λq > 0}.
In fact, for an arbitrarily given Ad(H)-invariant inner product < , > on
m, we have < , > |mi = λiB|mi on each mi by the help of Shur’s lemma
([cf. [12, 13]), and < mi,mj >= 0 for i, j (i 6= j) since (mi,Ad(H)) are
mutually inequivalent (cf. [8, 9, 11]).

Note that the Ricci tensor field Ric of a G-invariant Riemannian
metric on G/H is a G-invariant symmetric tensor field of type (0, 2) on
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G/H, and we identify Ric with an Ad(H)-invariant symmetric bilinear
form on m. Thus, if (mi,Ad(H)) are mutually inequivalent irreducible
representations, then Ric is written as

(4.6) Ric = y1B|mi + · · ·+ yqB|mq

for some y1, . . . , yq ∈ R.

4.3. The Ricci tensor field and the scalar curvature on
SU(3)/T (k, l) with an arbitrarily given SU(3)-invariant
metric

We retain the notation as in Section 4.2. In this section, we as-
sume that the isotropy irreducible representations (mi,Ad(T (k, l)) (i =
1, 2, 3, 4; k, l ∈ Z) are mutually inequivalent. For the sake of simplicity,
we put

D := Z2 \ {(0, t), (t, 0), (t, t), (t,−t), (t,−2t), (2t,−t) | t ∈ Z}.

Let ( , )0 be the negative of the Killing form of su(3), and < , >
an arbitrarily given Ad(T (k, l))-invariant inner product on m. By Theo-
rem 3.1, we obtain the fact that the isotropy irreducible representations
(mi,Ad(T (k, l)) (i = 1, 2, 3, 4; k, l ∈ Z) are mutually inequivalent if and
only if (k, l) in T (k, l) belongs to D. Since (mi,Ad(T (k, l)) are mutually
inequivalent, for the inner product < , > on m there are corresponding
positive numbers λ1, λ2, λ3 and λ4 such that

(4.7)

{X1/
√
λ1 =: Y1, X2/

√
λ1 =: Y2, X3/

√
λ2 =: Y3,

X4/
√
λ2 =: Y4, X5/

√
λ3 =: Y5, X6/

√
λ3 =: Y6,

X7/
√
λ4 =: Y7}

is an orthonormal basis of m with respect to the inner product < , >, by
virtue of (3.1), Theorem 3.1 and (4.5). This inner product < , > deter-
mines a SU(3)-invariant Riemannian metric g(λ1,λ2,λ3,λ4) on SU(3)/T (k, l).

From now on, we normalize SU(3)-invariant Riemannian metrics on
SU(3)/T (k, l) by putting λ4 = 1, and denote by g(λ1,λ2,λ3) the metric
defined by

λ1B|m1 + λ2B|m2 + λ3B|m3 +B|m4 .

By virtue of (3.1), (4.4), (4.6) and (4.7), we obtain the following
result.

Lemma 4.1. ([9]) Assume that (k, l) ∈ D. Then the Ricci tensor
Ric on the Riemannian homogeneous space (SU(3)/T (k, l), g(λ1,λ2,λ3))
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is given as follows:

Ric(Yi, Yj) = 0 (i 6= j),

Ric(Y1, Y1) = Ric(Y2, Y2) =
λ1

2 − λ22 − λ32 + 6λ2λ3
12λ1λ2λ3

− (k + l)2

8γλ1
2 ,

Ric(Y3, Y3) = Ric(Y4, Y4) =
λ2

2 − λ32 − λ12 + 6λ3λ1
12λ1λ2λ3

− l2

8γλ2
2 ,

Ric(Y5, Y5) = Ric(Y6, Y6) =
λ3

2 − λ12 − λ22 + 6λ1λ2
12λ1λ2λ3

− k2

8γλ3
2 ,

Ric(Y7, Y7) =
1

8γ

{
(k + l)2

λ1
2 +

l2

λ2
2 +

k2

λ3
2

}
,

where γ := k2 + kl + l2.

The trace of the Ricci tensor Ric of a Riemannian manifold (M, g),
(i.e.,

∑
j Ric(ej , ej), where {ej}j is a (locally defined) orthonormal frame

on (M, g)), is called the scalar curvature of (M, g).

By virtue of Lemma 4.1, we get

Lemma 4.2. ([9]) The scalar curvature S(λ1,λ2,λ3) of the Riemannian
homogeneous space (SU(3)/T (k, l), g(λ1,λ2,λ3)), (k, l) ∈ D, is given as
follows:

S(λ1,λ2,λ3) =
−(λ1

2 + λ2
2 + λ3

2) + 6(λ1λ2 + λ2λ3 + λ3λ1)

6λ1λ2λ3

− 1

8γ

{
(k + l)2

λ1
2 +

l2

λ2
2 +

k2

λ3
2

}
,

where γ := k2 + kl + l2.

4.4. A decomposition of the curvature tensor field on
(SU(3)/T (k, l), g(λ1,λ2,λ3))

We retain the notation as in Section 4.3. Let ∇ be the Levi-Civita
connection on the homogeneous space (SU(3)/T (k, l), g(λ1,λ2,λ3)) and
∇R the curvature tensor field with respect to ∇.

For the sake of convenience, we use the following notations:
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V := T{T (k,l)}(SU(3)/T (k, l)),

(V, g(λ1,λ2,λ3)|V ) =: (V,< , >), ∇R =: R,

L(V ) := {L | L is a curvature-like tensor on V },
L1(V ) := {L ∈ L(V ) | L(X,Y ) = c X ∧ Y for X,Y ∈ V

and some c ∈ R},
Lω(V ) := {L ∈ L(V ) | the Ricci tensor of L is zero},

L2(V ) := {L ∈ L1(V )⊥ | < L,L′ >= 0 for all L′ ∈ Lω(V )}.

Then, we get the orthogonal direct sum decomposition of L(V ) as fol-
lows:

L(V ) = L1(V )⊕ Lω(V )⊕ L2(V ).

So, the curvature tensor R at po(= {T (k, l)}) of the homogeneous space
(SU(3)/T (k, l), g(λ1,λ2,λ3)) is uniquely decomposed as

(4.8)
R = R(1) +Rω +R(2)

(R(1) ∈ L1(V ), Rω ∈ Lω(V ), R(2) ∈ L2(V )).

The curvature-like tensor Rω appeared in (4.8) is said to be the Weyl ten-
sor (field) of the curvature tensor field R on (SU(3)/T (k, l), g(λ1,λ2,λ3)).

Then, by virtue of (2.8), Lemmas 4.1 and 4.2, we obtain

Theorem 4.3. Let R(1), Rω and R(2) be the the curvature-like ten-
sors appeared in the curvature tensor R = R(1) +Rω +R(2) (∈ L1(V )⊕
Lω(V ) ⊕ L2(V )) on (SU(3)/T (k, l), g(λ1,λ2,λ3)). Assume that (k, l) be-
longs to D. Then

R(1)(Yi, Yj) =
1

42
S(λ1,λ2,λ3)Yi ∧ Yj ,

R(2)(Yi, Yj) =
1

5
{Ric(Yi) ∧ Yj + Yi ∧ Ric(Yj)} −

2

35
S(λ1,λ2,λ3)Yi ∧ Yj ,

Rω(Yi, Yj) = R(Yi, Yj)−
1

5
{Ric(Yi) ∧ Yj + Yi ∧ Ric(Yj)}

+
1

30
S(λ1,λ2,λ3)Yi ∧ Yj ,

where {Yi}7i=1 is an orthonormal basis on (m, < , >) and S(λ1,λ2,λ3) is
the scalar curvature of (SU(3)/T (k, l), g(λ1,λ2,λ3)).
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In general, the Ricci curvature r of a Riemannian manifold (M, g)
with respect to a nonzero vector v ∈ TM is defined by

r(v) =
Ric(v, v)

||v||2g
.

From Theorem 4.3, we get

Corollary 4.4. Let R(2) be the curvature-like tensor appeared in
the curvature tensor R = R(1)+Rω+R(2) on (SU(3)/T (k, l), g(λ1,λ2,λ3)),

where (k, l) ∈ D. Then the Ricci tensor of R(2) is given as follows:

Ric(2)(Yi, Yj) = −1

7
S(λ1,λ2,λ3) δij +Ric(Yi, Yj).

By the help of Lemma 4.1 and Corollary 4.4, we obtain

Proposition 4.5. Assume that (k, l) ∈ D, k > l > 0, and

λ ≤ 3l2

10(k2 + kl + l2)

in (SU(3)/T (k, l), g(λ,λ,λ)), λ > 0. Then the Ricci curvature r(2) of the

curvature-like tensor R(2) in the curvature tensor R = R(1) +Rω +R(2)

on (SU(3)/T (k, l), g(λ,λ,λ)) is estimated as follows:

r(2)(Y1) = r(2)(Y2) ≤ r(2) ≤ r(2)(Y7),
where r(2)(Yi) = Ric(2)(Yi, Yi) for i = 1, 2, . . . , 7.
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