JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 28, No. 2, May 2015 http://dx.doi.org/10.14403/jcms.2015.28.2.229

A DECOMPOSITION OF THE CURVATURE TENSOR ON SU(3)/T(k,l) WITH A SU(3)-INVARIANT METRIC

HEUI-SANG SON*, JOON-SIK PARK**, AND YONG-SOO PYO***

ABSTRACT. In this paper, we decompose the curvature tensor (field) on the homogeneous Riemannian manifold SU(3)/T(k,l) with an arbitrarily given SU(3)-invariant Riemannian metric into three curvature-like tensor fields, and investigate geometric properties.

1. Introduction

Let (V, < , >) be an *n*-dimensional real inner product space. In this paper, we use the notion of a curvature-like tensor of type (1,3) on (V, < , >) (cf. (2.1)). We put

 $\mathfrak{L}(V) := \{L \mid L \text{ is a curvature-like tensor on } (V, <, >)\},\$

 $\mathfrak{L}_1(V) := \{ L \in \mathfrak{L}(V) \mid L(u, v) = c \ u \wedge v \text{ for } u, v \in V \text{ and some } c \in \mathbb{R} \},\$

 $\mathfrak{L}_{\omega}(V) := \{ L \in \mathfrak{L}(V) \mid \text{the Ricci tensor } Ric_L \text{ of } L \text{ is zero} \},\$

 $\mathfrak{L}_2(V) := \{ L \in \mathfrak{L}_1(V)^{\perp} \mid \langle L, L' \rangle = 0 \text{ for all } L' \in \mathfrak{L}_{\omega}(V) \}.$

Then $\mathfrak{L}(V)$ is decomposed into the orthogonal direct sum $\mathfrak{L}_1(V) \oplus \mathfrak{L}_{\omega}(V) \oplus \mathfrak{L}_2(V)$. Let $L = L_1 + L_{\omega} + L_2$ $(L \in \mathfrak{L}(V))$ be the decomposition corresponding to $\mathfrak{L}_1(V) \oplus \mathfrak{L}_{\omega}(V) \oplus \mathfrak{L}_2(V)$. The component L_{ω} of $L \in \mathfrak{L}(V)$ is said to be the *Weyl tensor* of L. The curvature-like tensors L_1, L_{ω}, L_2 of $L = L_1 + L_{\omega} + L_2 \in \mathfrak{L}(V)$ are given in terms of the Ricci tensor Ric_L and the scalar curvature S_L of L (cf. Lemma 2.1).

In this paper, using Lemma 2.1 we decompose the curvature tensor on the homogeneous Riemannian manifold $(SU(3)/T(k,l), g_{(\lambda_1,\lambda_2,\lambda_3)})$ into three curvature-like tensor fields. On the manifold SU(3)/T(k,l), we deal with an arbitrary SU(3)-invariant Riemannian metric $g = g_{(\lambda_1,\lambda_2,\lambda_3)}$.

Received December 11, 2014; Accepted April 29, 2015.

²⁰¹⁰ Mathematics Subject Classification: Primary 53C30, 53C25.

Key words and phrases: curvature tensor field, homogeneous space, Weyl tensor, Ricci tensor.

Correspondence should be addressed to Yong-Soo Pyo, yspyo@pknu.ac.kr.

Geometric properties on SU(3)/T(k, l) have been studied by many mathematicians (cf. [1, 6, 9, 10]).

Now, let R be the curvature tensor (field) on the homogeneous manifold $(SU(3)/T(k,l), g_{(\lambda_1,\lambda_2,\lambda_3)})$, and $R = R^{(1)} + R^{\omega} + R^{(2)}$ the orthogonal decomposition of the curvature tensor R corresponding to

$$\mathfrak{L}(T_o(G/H)) = \mathfrak{L}_1(T_o(G/H)) \oplus \mathfrak{L}_\omega(T_o(G/H)) \oplus \mathfrak{L}_2(T_o(G/H))$$

(cf. Lemma 2.1), where G := SU(3), H := T(k, l) and $O := \{T(k, l)\}$. Let \mathfrak{m} be the subspace of $\mathfrak{su}(3)$ such that

$$B(\mathfrak{m},\mathfrak{t}(k,l)) = 0$$
 and $\operatorname{Ad}(h)\mathfrak{m} \subset \mathfrak{m} \quad (h \in T(k,l)),$

where $\mathfrak{su}(3)$ is the Lie algebra of SU(3), B is the negative of the Killing form of $\mathfrak{su}(3)$, $\mathfrak{t}(k,l)$ is the Lie algebra of T(k,l), and Ad is the adjoint representation of SU(3) on $\mathfrak{su}(3)$.

In this paper, we represent the curvature-like tensors $R^{(1)}$, R^{ω} and $R^{(2)}$ in the orthogonal decomposition $R = R^{(1)} + R^{\omega} + R^{(2)} (\in \mathfrak{L}_1(V) \oplus \mathfrak{L}_{\omega}(V) \oplus \mathfrak{L}_2(V))$ of the curvature tensor R on $(SU(3)/T(k,l), g_{(\lambda_1,\lambda_2,\lambda_3)})$ for $(k,l) \in D$, where

$$D := \mathbb{Z}^2 \setminus \{(0,t), (t,0), (t,t), (t,-t), (t,-2t), (2t,-t) \mid t \in \mathbb{R}\}$$

(cf. Theorem 4.3). And then, under the condition $(k, l) \in D \subset \mathbb{Z}^2$, we obtain the Ricci tensor $Ric^{(2)}$ of the component $R^{(2)}$ of the curvature $R = R^{(1)} + R^{\omega} + R^{(2)}$ on the homogeneous space $(SU(3)/T(k, l), g_{(\lambda_1, \lambda_2, \lambda_3)})$ (cf. Corollary 4.4). Furthermore, we estimate the Ricci curvature $r^{(2)}$ of the curvature-like tensor $R^{(2)}$ (cf. Proposition 4.5).

2. Preliminaries

Let (V, < , >) be an *n*-dimensional real inner product space and $\mathfrak{gl}(V)$ the vector space of all endomorphisms of V. We denote by $\mathfrak{L}(V)$ the vector space of all tensors of type (1,3) on V which satisfy the following properties:

$$L: V \times V \to \mathfrak{gl}(V)$$

is an \mathbb{R} -bilinear map such that, for all $v_1, v_2, v_3, v_4 \in V$,

$$(2.1) < L(v_1, v_2)v_3, v_4 > - < L(v_2, v_1)v_3, v_4 > = - < L(v_1, v_2)v_4, v_3 >, < L(v_1, v_2)v_3, v_4 > + < L(v_2, v_3)v_1, v_4 > + < L(v_3, v_1)v_2, v_4 > = 0.$$

A tensor $L \in \mathfrak{L}(V)$ (of type (1,3) on (V, < , >) which satisfies the condition (2.1)) is called a *curvature-like tensor* (cf. [3. 4]). If $L \in \mathfrak{L}(V)$, then we get from (2.1)

$$(2.2) \quad < L(v_1, v_2)v_3, v_4 > = < L(v_3, v_4)v_1, v_2 > \quad (v_1, v_2, v_3, v_4 \in V)$$

From now on, let $\{e_i\}_{i=1}^n$ be an orthonormal basis of (V, < , >). The *Ricci tensor Ric_L* of type (0, 2) with respect to a curvature-like tensor *L* on *V* is defined by

(2.3)
$$Ric_L(v,w) := \sum_{i=1}^n \langle L(e_i,v)w, e_i \rangle \quad (v,w \in V).$$

The *Ricci tensor* Ric_L of type (1,1) with respect to $L \in \mathfrak{L}(V)$ is defined by

(2.4)
$$\langle \operatorname{Ric}_L(v), w \rangle = Ric_L(v, w) \quad (v, w \in V).$$

For $L \in \mathfrak{L}(V)$, we obtain from (2.1) ~ (2.4)

$$Ric_L(v,w) = <\operatorname{Ric}_L(v), w > = Ric_L(w,v) = <\operatorname{Ric}_L(w), v >$$

for $v, w \in V$.

The trace of Ric_L for $L \in \mathfrak{L}(V)$

(2.5)
$$S_L := \sum_{i=1}^n < \operatorname{Ric}_L(e_i), e_i > = \sum_{i,j=1}^n < L(e_j, e_i)e_i, e_j >$$

is called the *scalar curvature* with respect to $L \in \mathfrak{L}(V)$. The *sectional curvature* $K_L(\sigma)$ $(L \in \mathfrak{L}(V))$ for each plane $\sigma = \{v, w\}_{\mathbb{R}}(\subset V)$ is defined by

$$K_L(\sigma) = \frac{\langle L(v, w)w, v \rangle}{\langle v, v \rangle \langle w, w \rangle - \langle v, w \rangle^2}.$$

In general, the inner product \langle , \rangle on $\mathfrak{L}(V)$ is defined by

(2.6)
$$< L, L' > = \sum_{i,j,k,l=1}^{n} L_{ijk}^{l} \cdot L'_{ijk}^{l},$$

where $L_{ijk}^{l} = \langle L(e_i, e_j)e_k, e_l \rangle$.

Let $\mathfrak{L}_1(V)$ be the subspace of $\mathfrak{L}(V)$ which consists of all elements $L \in \mathfrak{L}(V)$ such that

 $L(v, w) = c \ v \wedge w$ for $v, w \in V$ and some $c \in \mathbb{R}$.

Here $v \wedge w$ is an element of $\mathfrak{gl}(V)$ which is defined by

$$v \wedge w : V \ni z \longmapsto (v \wedge w)(z) = \langle w, z \rangle v - \langle v, z \rangle w \in V.$$

We put

232

$$\mathfrak{L}_1(V)^{\perp} := \{ L \in \mathfrak{L}(V) \mid \langle L, L' \rangle = 0 \text{ for all } L' \in \mathfrak{L}_1(V) \}.$$

Then $\mathfrak{L}_1(V)^{\perp} = \{L \in \mathfrak{L}(V) \mid S_L = 0\}$. In fact, for $L \in \mathfrak{L}(V)$ and $L' \in \mathfrak{L}_1(V)$, we get from (2.5) and (2.6), and the definition of $\mathfrak{L}_1(V)$

(2.7)
$$< L, L' >= 2c S_L,$$

where $L'(v, w) = cv \wedge w$ for some $c \in \mathbb{R}$. From (2.7), we obtain the following;

$$\langle L, L' \rangle = 0$$
 for all $L' \in \mathfrak{L}_1(V) \iff 2c S_L = 0$ for all $c \in \mathbb{R}$
 $\iff S_L = 0.$

Putting

$$\{L \in \mathfrak{L}_1(V)^{\perp} \mid \operatorname{Ric}_L = 0\} =: \mathfrak{L}_{\omega}(V)$$

and

$$\{L \in \mathfrak{L}_1(V)^{\perp} \mid \langle L, L' \rangle = 0 \text{ for all } L' \in \mathfrak{L}_{\omega}(V)\} =: \mathfrak{L}_2(V),$$

we get the orthogonal direct sum decomposition of $\mathfrak{L}(V)$ as follows:

$$\mathfrak{L}(V) = \mathfrak{L}_1(V) \oplus \mathfrak{L}_\omega(V) \oplus \mathfrak{L}_2(V).$$

Putting together the results above, we obtain the following (cf. [5, Chapter 5])

LEMMA 2.1. Let V be an $n(\geq 3)$ -dimensional real inner product space and $L \in \mathfrak{L}(V)$. Then components $L_1 \in \mathfrak{L}_1(V)$, $L_\omega \in \mathfrak{L}_\omega(V)$ and $L_2 \in \mathfrak{L}_2(V)$ of $L(=L_1 + L_\omega + L_2)$ are given as follows:

$$L_1(u,v) = \frac{S_L}{n(n-1)} u \wedge v,$$

$$L_2(u,v) = \frac{1}{n-2} \left\{ \operatorname{Ric}_L(u) \wedge v + u \wedge \operatorname{Ric}_L(v) - \frac{2S_L}{n} u \wedge v \right\},$$

$$L_{\omega}(u,v) = L(u.v) - \frac{1}{n-2} \left\{ \operatorname{Ric}_L(u) \wedge v + u \wedge \operatorname{Ric}_L(v) \right\}$$

$$+ \frac{S_L}{(n-1)(n-2)} u \wedge v.$$

Proof. The fact that L_1 , L_2 , L_{ω} appeared in (2.8) belong to $\mathfrak{L}(V)$ is easily verified. And, $L = L_1 + L_{\omega} + L_2$. Moreover from straightforward computations we get

$$S_{L_2} = 0$$
, $\operatorname{Ric}_{L_{\omega}} = 0$, $< L_2, L_{\omega} >= 0$.

Thus the proof of Lemma 2.1 is completed.

3. Inequivalent isotropy irreducible representations in SU(3)/T(k,l)

3.1. Isotropy irreducible representations

Let G be a compact connected semisimple Lie group and H a closed subgroup of G. The homogeneous space G/H is reductive, that is, in the Lie algebra \mathfrak{g} of G there exists a subspace \mathfrak{m} such that $\mathfrak{g} = \mathfrak{h} + \mathfrak{m}$ (direct sum of vector subspaces) and $Ad(h) \mathfrak{m} \subset \mathfrak{m}$ for all $h \in H$, where \mathfrak{h} is the subalgebra of \mathfrak{g} corresponding to the identity component H_o of H and Ad(h) denotes the adjoint representation of H in \mathfrak{m} .

Let τ_x ($x \in G$) be the transformation of G/H which is induced by x. Taking differentials of τ_x at $p_o := \{H\} \ (\in G/H)$, we obtain the fact that the tangent space $T_{p_o}(G/H) = \mathfrak{m}$ is $\operatorname{Ad}(H)$ -invariant. The homogeneous space G/H is said to be *isotropy irreducible* if $(T_{p_o}(G/H), \mathrm{Ad}(H))$ is an irreducible representation.

3.2. Inequivalent isotropy irreducible summands in SU(3)/T(k,l)

Here and from now on, without further specification, we use the following notations:

$$\begin{split} G &= SU(3), \quad \mathfrak{g}: \text{the Lie algebra of } SU(3), \quad i = \sqrt{-1}, \\ T &= T(k,l) = \{ diag[e^{2\pi i k \theta}, e^{2\pi i l \theta}, e^{-2\pi i (k+l) \theta} \mid \theta \in \mathbb{R} \} \text{ for } (k,l) \in \mathbb{Z}^2 \\ & \text{and } |k| + |l| \neq 0, \\ \mathfrak{t}(k,l): \text{the Lie algebra of } T(k,l), \quad \gamma = k^2 + kl + l^2, \\ (X,Y)_0 &= B(X,Y) = -6 \ Trace(XY), \ X,Y \in \mathfrak{g}: \text{the negative of} \\ & \text{the Killing form of } \mathfrak{g}. \end{split}$$

Let E_{ij} be a real 3×3 matrix with 1 on entry (i, j) and 0 elsewhere. And we put

(3.1)
$$X_{1} = \frac{1}{\sqrt{12}} (E_{12} - E_{21}), \qquad X_{2} = \frac{i}{\sqrt{12}} (E_{12} + E_{21}),$$
$$X_{3} = \frac{1}{\sqrt{12}} (E_{13} - E_{31}), \qquad X_{4} = \frac{i}{\sqrt{12}} (E_{13} + E_{31}),$$
$$X_{5} = \frac{1}{\sqrt{12}} (E_{23} - E_{32}), \qquad X_{6} = \frac{i}{\sqrt{12}} (E_{23} + E_{32}),$$

Heui-Sang Son, Joon-Sik Park, and Yong-Soo Pyo

$$X_{7} = \frac{i}{\sqrt{36\gamma}} diag[(k+2l), -(2k+l), (k-l)],$$

$$X_{8} = \frac{i}{\sqrt{12\gamma}} diag[k, l, -(k+l)].$$

Then

$$\{X_1, \cdots, X_7\}$$
 (resp. $\{X_8\}$)

is an orthonormal basis of \mathfrak{m} (resp. $\mathfrak{t}(k,l))$ with respect to $(\cdot\ ,\ \cdot)_0$ such that

$$\mathfrak{g} = \mathfrak{m} + \mathfrak{t}(k, l)$$
 and $(\mathfrak{m}, \mathfrak{t}(k, l))_0 = 0$.

If we put $\{X_1, X_2\}_{\mathbb{R}} = \mathfrak{m}_1, \{X_3, X_4\}_{\mathbb{R}} = \mathfrak{m}_2, \{X_5, X_6\}_{\mathbb{R}} = \mathfrak{m}_3, \text{ and } \{X_7\}_{\mathbb{R}} = \mathfrak{m}_4$, then \mathfrak{m}_i are irreducible $\operatorname{Ad}(T)$ -representation spaces.

In general, two representations (μ_1, V_1) and (μ_2, V_2) of a Lie group G are called *equivalent* if there exists a linear isomorphism ρ of V_1 onto V_2 such that $\rho \circ \mu_1(x) = \mu_2(x) \circ \rho$ for all $x \in G$.

Park obtained the following

THEOREM 3.1. ([9]) Assume that $|k| + |l| \neq 0$ $(k, l \in \mathbb{Z})$. Then a necessary and sufficient condition for $(\mathfrak{m}_i, \operatorname{Ad}(T(k, l)))$ (i = 1, 2, 3, 4) to be mutually inequivalent is

$$k \neq 0, \ l \neq 0, \ k \neq \pm l, \ k \neq -2l \ and \ l \neq -2k.$$

4. A decomposition of the curvature tensor on SU(3)/T(k,l) with an arbitrarily given SU(3)-invariant Riemannian metric

4.1. The curvature tensor field on a homogeneous Riemannian space

Let G be a compact connected semisimple Lie group and H a closed subgroup of G. We denote by \mathfrak{g} and \mathfrak{h} the corresponding Lie algebras of G and H, respectively. Let B be the negative of the Killing form of \mathfrak{g} . We consider the Ad(H)-invariant decomposition $\mathfrak{g} = \mathfrak{h} + \mathfrak{m}$ with $B(\mathfrak{h}, \mathfrak{m}) = 0$. Then the set of G-invariant symmetric covariant 2-tensor fields on G/Hcan be identified with the set of Ad(H)-invariant symmetric bilinear forms on \mathfrak{m} . In particular, the set of G-invariant Riemannian metrics on G/H is identified with the set of Ad(H)-invariant inner products on \mathfrak{m} (cf. [2, 5, 8, 9]).

Let \langle , \rangle be an inner product which is invariant with respect to Ad(H) on \mathfrak{m} , where Ad denotes the adjoint representation of H in \mathfrak{g} .

This inner product < , > determines a G-invariant Riemannian metric $g_{<,>}$ on G/H.

For the sake of the calculus, we take a neighborhood V of the identity element e in G and a subset N (resp. N_H) of G (resp. H) in such a way that

- (i) $N = V \cap \exp(\mathfrak{m}), \quad N_H = V \cap \exp(\mathfrak{h}),$
- (ii) the map $N \times N_H \ni (c, h) \mapsto ch \in N \cdot N_H$ is a diffeomorphism,
- (iii) the projection π of G onto G/H is a diffeomorphism of N onto a neighborhood $\pi(N)$ of the origin $\{H\}$ in G/H. Here, $\{\exp(tX) \mid t \in \mathbb{R}\}$ for $X \in \mathfrak{g}$ is a 1-parameter subgroup of G.

Now for an element $X \in \mathfrak{m}$, we define a vector field X^* on the neighborhood $\pi(N)$ of $\{H\}$ in G/H by

$$X_{\pi(c)}^* := (\tau_c)_* X_{\{H\}} \in T_{\pi(c)} G/H \quad (c \in N),$$

where τ_c denotes the transformation of G/H which is induced by c. Let $\{X_i\}_i$ be an orthonormal basis of the inner product space $(\mathfrak{m}, <, >)$. Then $\{X_i\}_i$ is an orthonormal frame on $\pi(N) (\subset G/H)$.

On the other hand, the connection function α (cf. [7, p.43]) on $\mathfrak{m} \times \mathfrak{m}$ corresponding to the invariant Riemannian connection of $(G/H, g_{<,>})$ is given as follows (cf. [7, p.52]):

$$\alpha(X,Y) = \frac{1}{2} [X,Y]_{\mathfrak{m}} + U(X,Y) \quad (X,Y \in \mathfrak{m}) \,,$$

where U(X, Y) is determined by

$$2 < U(X,Y), Z > = < [Z,X]_{\mathfrak{m}}, Y > + < X, [Z,Y]_{\mathfrak{m}} >$$

for $X, Y, Z \in \mathfrak{m}$, and $X_{\mathfrak{m}}$ denotes the \mathfrak{m} -component of an element $X \in \mathfrak{g} = \mathfrak{h} + \mathfrak{m}$. Let ∇ be the Levi-Civita connection on the Riemannian manifold $(G/H, g_{<,>})$. Then on $\pi(N)$ $(\nabla_{X^*}Y^*)_{\{H\}} = \alpha(X,Y)$ $(X,Y \in \mathfrak{m})$. Moreover, the expression for the value at $p_o := \{H\} (\in G/H)$ of the curvature tensor field is as follows (cf. [7, p.47]):

(4.1)
$$\begin{array}{rcl} R(X,Y)Z = & \alpha(X,\alpha(Y,Z)) - \alpha(Y,\alpha(X,Z)) \\ & & -\alpha([X,Y]_{\mathfrak{m}},Z) - [[X,Y]_{\mathfrak{h}},Z] & (X,Y,Z \in \mathfrak{m}), \end{array}$$

where $X_{\mathfrak{m}}$ (resp. $X_{\mathfrak{h}}$) denotes the \mathfrak{m} - component (resp. \mathfrak{h} -component) of an element $X \in \mathfrak{g} = \mathfrak{h} + \mathfrak{m}$.

In general, the Ricci tensor field Ric of type (0,2) on a Riemannian manifold (M,g) is defined by

$$(4.2) \qquad Ric(Y,Z) = Trace \ \{X \mapsto R(X,Y)Z\} \quad (X,Y,Z \in \mathfrak{X}(M)).$$

Let $\{Y_j\}_j$ be an orthonormal basis of the inner product $(\mathfrak{m}, <, >)$. Since the group G is unimodular, we obtain the fact (cf. [2, p.184]) that

(4.3)
$$\sum_{j} U(Y_j, Y_j) = 0$$

Using (4.1), (4.2) and (4.3), we obtain the following expression (cf. [2, p.184-185]) for the value at p_o of the Ricci tensor field Ric on $(G/H, g_{<,>})$:

(4.4)

$$Ric(Y,Y) = -\frac{1}{2}\sum_{j} < [Y,Y_{j}]_{\mathfrak{m}}, [Y,Y_{j}]_{\mathfrak{m}} > +\frac{1}{2}B(Y,Y) + \frac{1}{4}\sum_{i,j} < [Y_{i},Y_{j}]_{\mathfrak{m}}, Y >^{2}$$

for $Y \in \mathfrak{m}$, where B is the negative of the Killing form of the Lie algebra \mathfrak{g} .

4.2. Ricci tensor fields on inequivalent isotropy irreducible homogeneous spaces

We retain the notation as in Section 4.1. The set of G-invariant symmetric tensor fields of type (0, 2) on G/H can be identified with the set of $\operatorname{Ad}(H)$ -invariant symmetric bilinear forms on \mathfrak{m} . In particular, the set of G-invariant metrics on G/H is identified with the set of $\operatorname{Ad}(H)$ -invariant inner products on \mathfrak{m} .

Let $(,)_o$ be an Ad(G)-invariant inner product on \mathfrak{g} such that $(\mathfrak{m}, \mathfrak{h})_o = 0$. For the sake of simplicity, we put $(,)_o =: B$. Let $\mathfrak{m} = \mathfrak{m}_1 + \cdots + \mathfrak{m}_q$ be an orthogonal Ad(H)-invariant decomposition of the space (\mathfrak{m}, B) such that Ad $(H)_{\mathfrak{m}_i}$ is irreducible for $i = 1, \ldots, q$, and assume that $(\mathfrak{m}_i, \operatorname{Ad}(H))$ are mutually inequivalent irreducible representations. Then, the space of G-invariant symmetric tensor fields of type (0, 2) on G/H is given by

$$\{\lambda_1 B|_{\mathfrak{m}_1} + \dots + \lambda_q B|_{\mathfrak{m}_q} \mid \lambda_1, \dots, \lambda_q \in \mathbb{R}\},\$$

and the space of G-invariant Riemannian metrics on G/H is given by

(4.5)
$$\{\lambda_1 B|_{\mathfrak{m}_1} + \dots + \lambda_q B|_{\mathfrak{m}_q} \mid \lambda_1 > 0, \dots, \lambda_q > 0\}.$$

In fact, for an arbitrarily given $\operatorname{Ad}(H)$ -invariant inner product \langle , \rangle on \mathfrak{m} , we have $\langle , \rangle |_{\mathfrak{m}_i} = \lambda_i B|_{\mathfrak{m}_i}$ on each \mathfrak{m}_i by the help of Shur's lemma ([cf. [12, 13]), and $\langle \mathfrak{m}_i, \mathfrak{m}_j \rangle = 0$ for $i, j \ (i \neq j)$ since $(\mathfrak{m}_i, \operatorname{Ad}(H))$ are mutually inequivalent (cf. [8, 9, 11]).

Note that the Ricci tensor field Ric of a G-invariant Riemannian metric on G/H is a G-invariant symmetric tensor field of type (0, 2) on

G/H, and we identify Ric with an Ad(H)-invariant symmetric bilinear form on \mathfrak{m} . Thus, if $(\mathfrak{m}_i, Ad(H))$ are mutually inequivalent irreducible representations, then Ric is written as

(4.6)
$$Ric = y_1 B|_{\mathfrak{m}_i} + \dots + y_q B|_{\mathfrak{m}_q}$$

for some $y_1, \ldots, y_q \in \mathbb{R}$.

4.3. The Ricci tensor field and the scalar curvature on SU(3)/T(k,l) with an arbitrarily given SU(3)-invariant metric

We retain the notation as in Section 4.2. In this section, we assume that the isotropy irreducible representations $(\mathfrak{m}_i, \operatorname{Ad}(T(k, l)) \ (i = 1, 2, 3, 4; k, l \in \mathbb{Z})$ are mutually inequivalent. For the sake of simplicity, we put

$$D := \mathbb{Z}^2 \setminus \{(0,t), (t,0), (t,t), (t,-t), (t,-2t), (2t,-t) \mid t \in \mathbb{Z}\}.$$

Let $(,)_0$ be the negative of the Killing form of $\mathfrak{su}(3)$, and \langle , \rangle an arbitrarily given $\operatorname{Ad}(T(k,l))$ -invariant inner product on \mathfrak{m} . By Theorem 3.1, we obtain the fact that the isotropy irreducible representations $(\mathfrak{m}_i, \operatorname{Ad}(T(k,l)) \ (i = 1, 2, 3, 4; \ k, l \in \mathbb{Z})$ are mutually inequivalent if and only if (k, l) in T(k, l) belongs to D. Since $(\mathfrak{m}_i, \operatorname{Ad}(T(k, l))$ are mutually inequivalent, for the inner product \langle , \rangle on \mathfrak{m} there are corresponding positive numbers $\lambda_1, \lambda_2, \lambda_3$ and λ_4 such that

(4.7)
$$\{ X_1/\sqrt{\lambda_1} =: Y_1, \quad X_2/\sqrt{\lambda_1} =: Y_2, \quad X_3/\sqrt{\lambda_2} =: Y_3, \\ X_4/\sqrt{\lambda_2} =: Y_4, \quad X_5/\sqrt{\lambda_3} =: Y_5, \quad X_6/\sqrt{\lambda_3} =: Y_6, \\ X_7/\sqrt{\lambda_4} =: Y_7 \}$$

is an orthonormal basis of \mathfrak{m} with respect to the inner product \langle , \rangle , by virtue of (3.1), Theorem 3.1 and (4.5). This inner product \langle , \rangle determines a SU(3)-invariant Riemannian metric $g_{(\lambda_1,\lambda_2,\lambda_3,\lambda_4)}$ on SU(3)/T(k,l).

From now on, we normalize SU(3)-invariant Riemannian metrics on SU(3)/T(k,l) by putting $\lambda_4 = 1$, and denote by $g_{(\lambda_1,\lambda_2,\lambda_3)}$ the metric defined by

$$\lambda_1 B|_{\mathfrak{m}_1} + \lambda_2 B|_{\mathfrak{m}_2} + \lambda_3 B|_{\mathfrak{m}_3} + B|_{\mathfrak{m}_4}.$$

By virtue of (3.1), (4.4), (4.6) and (4.7), we obtain the following result.

LEMMA 4.1. ([9]) Assume that $(k, l) \in D$. Then the Ricci tensor Ric on the Riemannian homogeneous space $(SU(3)/T(k, l), g_{(\lambda_1, \lambda_2, \lambda_3)})$ is given as follows:

$$\begin{aligned} &Ric(Y_{i}, Y_{j}) = 0 \quad (i \neq j),\\ &Ric(Y_{1}, Y_{1}) = Ric(Y_{2}, Y_{2}) = \frac{\lambda_{1}^{2} - \lambda_{2}^{2} - \lambda_{3}^{2} + 6\lambda_{2}\lambda_{3}}{12\lambda_{1}\lambda_{2}\lambda_{3}} - \frac{(k+l)^{2}}{8\gamma\lambda_{1}^{2}},\\ &Ric(Y_{3}, Y_{3}) = Ric(Y_{4}, Y_{4}) = \frac{\lambda_{2}^{2} - \lambda_{3}^{2} - \lambda_{1}^{2} + 6\lambda_{3}\lambda_{1}}{12\lambda_{1}\lambda_{2}\lambda_{3}} - \frac{l^{2}}{8\gamma\lambda_{2}^{2}},\\ &Ric(Y_{5}, Y_{5}) = Ric(Y_{6}, Y_{6}) = \frac{\lambda_{3}^{2} - \lambda_{1}^{2} - \lambda_{2}^{2} + 6\lambda_{1}\lambda_{2}}{12\lambda_{1}\lambda_{2}\lambda_{3}} - \frac{k^{2}}{8\gamma\lambda_{3}^{2}},\\ &Ric(Y_{7}, Y_{7}) = \frac{1}{8\gamma} \left\{ \frac{(k+l)^{2}}{\lambda_{1}^{2}} + \frac{l^{2}}{\lambda_{2}^{2}} + \frac{k^{2}}{\lambda_{3}^{2}} \right\},\end{aligned}$$

where $\gamma := k^2 + kl + l^2$.

The trace of the Ricci tensor Ric of a Riemannian manifold (M, g), (i.e., $\sum_{j} Ric(e_j, e_j)$, where $\{e_j\}_j$ is a (locally defined) orthonormal frame on (M, g)), is called the *scalar curvature* of (M, g).

By virtue of Lemma 4.1, we get

LEMMA 4.2. ([9]) The scalar curvature $S_{(\lambda_1,\lambda_2,\lambda_3)}$ of the Riemannian homogeneous space $(SU(3)/T(k,l), g_{(\lambda_1,\lambda_2,\lambda_3)}), (k,l) \in D$, is given as follows:

$$S_{(\lambda_1,\lambda_2,\lambda_3)} = \frac{-(\lambda_1^2 + \lambda_2^2 + \lambda_3^2) + 6(\lambda_1\lambda_2 + \lambda_2\lambda_3 + \lambda_3\lambda_1)}{6\lambda_1\lambda_2\lambda_3} - \frac{1}{8\gamma} \left\{ \frac{(k+l)^2}{\lambda_1^2} + \frac{l^2}{\lambda_2^2} + \frac{k^2}{\lambda_3^2} \right\},$$

where $\gamma := k^2 + kl + l^2$.

4.4. A decomposition of the curvature tensor field on $(SU(3)/T(k,l),g_{(\lambda_1,\lambda_2,\lambda_3)})$

We retain the notation as in Section 4.3. Let ∇ be the Levi-Civita connection on the homogeneous space $(SU(3)/T(k,l), g_{(\lambda_1,\lambda_2,\lambda_3)})$ and ∇R the curvature tensor field with respect to ∇ .

For the sake of convenience, we use the following notations:

A decomposition of the curvature tensor on SU(3)/T(k,l)

239

$$\begin{split} V &:= T_{\{T(k,l)\}}(SU(3)/T(k,l)), \\ (V,g_{(\lambda_1,\lambda_2,\lambda_3)}|_V) &=: (V, < , >), \quad \nabla R =: R, \\ \mathfrak{L}(V) &:= \{L \mid L \text{ is a curvature-like tensor on } V\}, \\ \mathfrak{L}_1(V) &:= \{L \in \mathfrak{L}(V) \mid L(X,Y) = c \ X \wedge Y \text{ for } X, Y \in V \\ & \text{ and some } c \in \mathbb{R}\}, \\ \mathfrak{L}_{\omega}(V) &:= \{L \in \mathfrak{L}(V) \mid \text{ the Ricci tensor of } L \text{ is zero}\}, \end{split}$$

$$\mathfrak{L}_2(V) := \{ L \in \mathfrak{L}_1(V)^{\perp} \mid \langle L, L' \rangle = 0 \text{ for all } L' \in \mathfrak{L}_{\omega}(V) \}.$$

Then, we get the orthogonal direct sum decomposition of $\mathfrak{L}(V)$ as follows:

$$\mathfrak{L}(V) = \mathfrak{L}_1(V) \oplus \mathfrak{L}_\omega(V) \oplus \mathfrak{L}_2(V)$$

So, the curvature tensor R at $p_o(=\{T(k,l)\})$ of the homogeneous space $(SU(3)/T(k,l), g_{(\lambda_1,\lambda_2,\lambda_3)})$ is uniquely decomposed as

(4.8)
$$R = R^{(1)} + R^{\omega} + R^{(2)}$$
$$(R^{(1)} \in \mathfrak{L}_1(V), \ R^{\omega} \in \mathfrak{L}_{\omega}(V), \ R^{(2)} \in \mathfrak{L}_2(V))$$

The curvature-like tensor R^{ω} appeared in (4.8) is said to be the Weyl tensor (field) of the curvature tensor field R on $(SU(3)/T(k,l), g_{(\lambda_1,\lambda_2,\lambda_3)})$.

Then, by virtue of (2.8), Lemmas 4.1 and 4.2, we obtain

THEOREM 4.3. Let $R^{(1)}$, R^{ω} and $R^{(2)}$ be the the curvature-like tensors appeared in the curvature tensor $R = R^{(1)} + R^{\omega} + R^{(2)} (\in \mathfrak{L}_1(V) \oplus \mathfrak{L}_{\omega}(V) \oplus \mathfrak{L}_2(V))$ on $(SU(3)/T(k,l), g_{(\lambda_1,\lambda_2,\lambda_3)})$. Assume that (k,l) belongs to D. Then

$$\begin{split} R^{(1)}(Y_i, Y_j) &= \frac{1}{42} S_{(\lambda_1, \lambda_2, \lambda_3)} Y_i \wedge Y_j, \\ R^{(2)}(Y_i, Y_j) &= \frac{1}{5} \{ \operatorname{Ric}(Y_i) \wedge Y_j + Y_i \wedge \operatorname{Ric}(Y_j) \} - \frac{2}{35} S_{(\lambda_1, \lambda_2, \lambda_3)} Y_i \wedge Y_j, \\ R^{\omega}(Y_i, Y_j) &= R(Y_i, Y_j) - \frac{1}{5} \{ \operatorname{Ric}(Y_i) \wedge Y_j + Y_i \wedge \operatorname{Ric}(Y_j) \} \\ &\quad + \frac{1}{30} S_{(\lambda_1, \lambda_2, \lambda_3)} Y_i \wedge Y_j, \end{split}$$

where $\{Y_i\}_{i=1}^7$ is an orthonormal basis on $(\mathfrak{m}, <, >)$ and $S_{(\lambda_1, \lambda_2, \lambda_3)}$ is the scalar curvature of $(SU(3)/T(k, l), g_{(\lambda_1, \lambda_2, \lambda_3)})$.

In general, the *Ricci curvature* r of a Riemannian manifold (M, g) with respect to a nonzero vector $v \in TM$ is defined by

$$r(v) = \frac{Ric(v,v)}{||v||_g^2}$$

From Theorem 4.3, we get

COROLLARY 4.4. Let $R^{(2)}$ be the curvature-like tensor appeared in the curvature tensor $R = R^{(1)} + R^{\omega} + R^{(2)}$ on $(SU(3)/T(k,l), g_{(\lambda_1,\lambda_2,\lambda_3)})$, where $(k,l) \in D$. Then the Ricci tensor of $R^{(2)}$ is given as follows:

$$Ric^{(2)}(Y_i, Y_j) = -\frac{1}{7}S_{(\lambda_1, \lambda_2, \lambda_3)} \ \delta_{ij} + Ric(Y_i, Y_j).$$

By the help of Lemma 4.1 and Corollary 4.4, we obtain

PROPOSITION 4.5. Assume that $(k, l) \in D, k > l > 0$, and

$$\lambda \le \frac{3l^2}{10(k^2 + kl + l^2)}$$

in $(SU(3)/T(k,l), g_{(\lambda,\lambda,\lambda)}), \lambda > 0$. Then the Ricci curvature $r^{(2)}$ of the curvature-like tensor $R^{(2)}$ in the curvature tensor $R = R^{(1)} + R^{\omega} + R^{(2)}$ on $(SU(3)/T(k,l), g_{(\lambda,\lambda,\lambda)})$ is estimated as follows:

$$r^{(2)}(Y_1) = r^{(2)}(Y_2) \le r^{(2)} \le r^{(2)}(Y_7),$$

where $r^{(2)}(Y_i) = Ric^{(2)}(Y_i, Y_i)$ for i = 1, 2, ..., 7.

References

- S. Aloff and N. R. Wallach, An infinite family of distinct 7-manifolds admitting positively Riemannian metrics, Bull. Amer. Math. Soc. 81 (1975), 93-97.
- [2] A. L. Besse, *Einstein Manifolds*, Springer Verlag, 1987.
- [3] P.-Y. Kim, J.-S. Park, and Y.-S. Pyo, Harmonic maps between the group of automorphisms of the quaternion algebra, J. Chungcheong Math. Soc. 25 (2012), no. 2, 331-339.
- [4] H. W. Kim, J.-S. Park, and Y.-S. Pyo, Torsion tensor forms on induced bundles, J. Chungcheong Math. Soc. 26 (2013), no. 4, 793-798.
- [5] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. 1, 1963; Vol. 2, 1969, John Wiley and Sons, New York.
- [6] M. Kreck and S. Stolz, Some nondiffeomorphic homogeneous 7-manifolds with positive sectional curvature, J. Differential Geom. 33 (1991), 465-486.
- [7] K. Nomizu, Invariant affine connections on homogeneous spaces, Amer. J. Math. 76 (1954), 33-65.
- [8] J.-S. Park, Stability of the identity map of SU(3)/T(k, l), Tokyo J. Math. 17 (1994), no. 2, 281-289.
- [9] J.-S. Park, Curvatures on SU(3)/T(k, l), Kyushu J. Math. 67 (2013), 55-65.

- [10] H. Urakawa, Numerical computation of the spectra of the Laplacian on 7dimensional homogeneous manifolds $SU(3)/T_{k,l}$, SIAM J. Math. Anal. 15 (1984), 979-987.
- [11] H. Urakawa, The first eigenvalue of the Laplacian for a positively curved homogeneous Riemannian manifold, Compositio Math. 59 (1986), 57-71.
- [12] N. Wallach, Harmonic Analysis on Homogeneous Spaces, Dekker, New York, 1973.
- [13] M. Y. Wang, Some examples of homogeneous Einstein manifolds in dimension seven, Duke Math. J. 49 (1982), 23-28.

*

Department of Applied Mathematics Pukyong National University Busan 608-737, Republic of Korea *E-mail*: sonheuisang@hanmail.net

**

Department of Mathematics Pusan University of Foreign Studies Busan 609-815, Republic of Korea *E-mail*: iohpark@pufs.ac.kr

Department of Applied Mathematics Pukyong National University Busan 608-737, Republic of Korea *E-mail*: yspyo@pknu.ac.kr